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Focal Region Fields of Reflectors 
of Arbitrary Surface 

Abstract 

The problem of the focal region fields scattered by an arbitrary surface reflector under 

uniform plane wave illumination is solved. The Physical Optics (PO) approximation is used 

to calculate the current induced on the reflector, The surface of the reflector is described 

by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional 

Gaussian quadrature is employed to numerically evaluate the integral expressions of the 

scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation 

of the focal fields problem to surface compensation techniques and other applications are 

mentioned. Several examples of distorted parabolic reflectors are presented. The computer 

code developed is included, together with instructions on its usage. 
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I Introduction 
1 

I 

I 
Far field electromagnetic scattering from conducting surfaces of arbitrary shape has 

I been studied by several researchers [l-61. To our knowledge, however, little or no attention 

has been given to the near field scattering from arbitrary surfaces. The analysis of this 

problem may be useful to the efforts of compensation of reflector surface distortions. To 

illustrate this, let us consider the following situation. A plane wave, E , IS incident on 

an arbitrary reflector; the scattered fields, E', in a region, R ,  in the neighborhood of the 

-1 . 

reflector are calculated by the method outlined in the present paper. Using the reciprocity 

theorem yields, if in the fields E' are considered to be incident on the reflector, then the 

fields scattered by it will be Ei. For antenna performance considerations Ei  is required 

to meet certain specifications. These specifications can be easily employed in the context 

of the method presented here and yield the E' fields in R. If R is chosen to be the 

region occupied by the feed, then E' is related to the excitation. Thus a scheme can be 

developed to provide the necessary excitation that renders desired far fields, E', from a 

reflector antenna of arbitrary shape. In addition, focal field analysis may be applied to the 

problem of scattering by objects in the neighborhood of the feed and/or on the feed itself. 

In the present paper, we develop a straightforward method to solve for the scattered 

fields (with emphasis in the near field zone) when a plane wave is incident on a reflector 

with arbitrary surface. The currents induced on the reflector are calculated by the Physical 

Optics (PO) approximation (K = 2% x pi). Subsequently, these currents are used as 

sources of the scattered fields and explicit integral expressions of the latter in terms of 

are shown. These integrals expressions involve no approximation due to the position of 

the observation points with respect to the sources and, therefore, are valid for all zones 
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(near, Fresnel and Fraunhofer). Since we deal with rapidly oscillating integrands, accurate 

integration techniques are required and employed in the present work. 

1. 

2. 

3. 

The novelty of our method consists of 

Triangular discretization of the reflector aperture by a max-min criterion based 

algorithm. 

Reflector surface representation via interpolation of several fifth degree bivariate 

polynomials. 

Development of a systematic, 2-dimensional, Gaussian quadrature calculation of the 

integrals involved in the scattered field expressions. 

In this report, we examine the effects of various surface distortions on the focal region 

fields of parabolic reflectors. The performance of distorted reflectors with frequency is also 

discussed. 

Theory 

Let us consider a plane electromagnetic wave incident on an arbitrarily shaped and 

perfectly conducting surface, E, as in Figure 1. Let us also consider a Cartesian coordinate 

system Osyz such that the magnetic field of the incident wave is along the y axis and the 

wave vector is along the negative z axis. The surface of the reflector in this coordinate 

system is described by the function 

z = g ( x , y ) .  

The fields of the incident wave are given by 

- 
H = BHoejPz  
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where 

and ,!3 is the wavenumber. 2,c  and 2 are the unit vectors along the axis of the Ozyz 

coordinate system and q is the intrinsic impedance of the medium. According to the 

physical optics ( P O )  approximation, a surface current density K is induced on the reflector. 

This current density is the source of the scattered fields and is equal to 

where h(?) is the unit vector normal to the surface of the reflector. Using (1) we can obtain 

the expression 

Elaborating on Equation (6) and using Equation (2) and ( S ) ,  the surface current density 

K(F) is derived to be 

The vector potential due to this current is 

The magnetic and electric scattered fields are related to A(T) by 

- 
H ( T )  = v x X ( P )  
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and 

- 1 E ( f )  = -v x v x X ( f ) .  
.Jwr 

Expanding Equation (10) we obtain the following integral expression of the electric field 

in terms of the current density. 

] 3 + 3 j P i 4 -  ,02 R 2  (7  - F') 
- 1 

where E is the dielectric permittivity of the environment and ?z = F - ? I .  Equation (11) is 

in agreement with an alternative expression given by Silver [7]. The integration is carried 

over the illuminated portion of the reflector and d2r'  is the area element on C. If u is the 

projection of C on the x - y plane, the integral of Equation (11) can be performed on 0 due 

to the relation dictated by Equation (1) .  Differential geometry considerations [2,8] yield 

the following relation between the area elements on C and u, d2r' and dx'dy '  respectively. 

Combining Equation (7) and (12) we obtain 

Substituting Equation (13) into Equation (11) we get 

(2 + i -!$) } d z ' d y ' .  
' 1 - P2R2 + j P R  

R2 + 
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Normalized to the magnl;ude of the electric field of the incident wave and expressed in 

component form, Equation (14)  yields 

x - X I  + (2 - ( x  - 2‘) 
- j p ( R - r ’ )  

R 
1 

} dx‘dy’ 
1 - P2R2 + j p R  

R2 + 

P2R2 - 3 - 3jpR 
R4 

Calculation of Integrals 

The expressions of the scattered electric field in Equation (14) has been obtained by 

making only one approximation, namely the PO approximation (cf. Equation ( 5 ) ) .  Since 

we are primarily interested in the focal region fields, the usual and convenient far field 

approximations cannot be used here. Neither can the Fresnel region approximations since 

we would like to treat geometries for which the focal point is in the near zone. Since we 

want to analyze arbitrary surfaces, a good way to represent the reflector is by a number 

of “target points.” In an experimental version of this problem, target points would be 

small dots of an appropriate material placed on the surface of the reflector. We assume 

that the coordinates of these points can be measured by some technique (photogrammetic 

measurements). The projection of these points on the x - y plane provides a natural 

discretization of the domain of integration u (see Figure 2) .  We employ a max min criterion 

algorithm [9,10] to define triangles with vertices which are the projections of the target 
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points on 0. Since the collection of all triangles constitutes a polygonal approximation 

to u ,  the integrals over u can be found by simply calculating the contribution from each 

triangular domain and subsequently adding them up. For an analytical representation of 

the surface of the reflector) the same program mentioned above is used to interpolate a fifth 

degree bivariate polynomial in each triangular domain. This polynomial representation is 

used to estimate the values of z' and on the surface OF the reflector. Needless to say, the 

larger the number of target points and, thus, triangles on u ,  the better the representation of 

E. The integral of Equation (14) is not only vectorial but, it is complex as well. Therefore, 

I numerically we need to perform six integrations in order to find the real and imaginary 

parts of all three components of the electric field at an arbitrary point = 2x + cy + iz. 
I 
I 

The functions to be integrated can be very oscillatory in nature due to the phase term 

exp(-jp(r - 2')) and also due to the presence of the ag/ds' term. As is well known [ 11,121 

there are no satisfactory quadrature formulae to integrate functions on triangular domains. 

However, a series of mappings can be employed to transform a triangle into a square (see 

Figure 3). There, a simple extension of the one-dimensional Gaussian Quadrature is 

available. A brief outline of this method follows. 

By means of a linear transformation', every triangle of the z-y plane can be mapped 

onto a specific triangle in another plane, u--2). Consider an arbitrary triangle in the x - y 

plane with vertices ( z l , y l ) ,  (z2,y2) and (53,y3). This arbitrary triangle can be mapped 

onto a basic triangle in another coordinate system, u - t), by the transformation: 

z = z ~ + ~ u + ~ v  ( 1 8 4  

y = y1 + cu + dv t 186) 

where 

a = 52 - 21 
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b 1 23 - X I  

c = Y2 - Y1 

112 0 

l f s  1 - r  
4 4 

-- - 

and 

1 - r  
8 

- -  - 

d = Y3 - Y1 

The Jacobian of mapping (18) is 

The inverse transformation is 

u = [ d ( ~  - 21)  - b(Y - y l ) ] / ( ~ d  - bc) 

u = [-c(z - 21)  t a ( y  - Y l ) ] / ( U d  - b c ) .  

According to (18), the vertices A = (z l ,yl)B = ( 2 2 , ~ ~ )  and C = (z3,y3)  are mapped 

onto the points [ O , O ] ,  [1,0] and [0,1], respectively, in the u - u coordinate system. These 

points define what we call the basic triangle in the u - u system. As mentioned above, 

there are no satisfactory quadrature formulae for integration on triangular domains for 

rapidIy oscillatory integrands. The basic triangle in the u - u system can be mapped onto 

a square domain by means of the transformation 

The Jacobian of mapping (25) is 

l f r  
2 

u = -  

1 - r  
u = (T) (1 + s). 

( 2 5 4  

8 



According to (25), the sides u = 0 and u = 1 - u of the basic triangle are mapped onto the 

lines s = -1 and s = + I  respectively, in the r - s coordinate system. Similarly, the side 

u = 0 is mapped onto the line r = -1 and, the point B is mapped onto the line r = 1. In 

Figure 2, we show the series of mappings described above. 
I 

An integral over D,, can be numerically calculated using a Gaussian quadrature 

formula on the square domain D,, provided we represent the integrand appropriately. 

Thus, if f ( z , y )  is a function defined over the triangular domain D,, and I is the integral 

we know that 

and also 

For our purposes, Equation (29) essentially looks like 

where 

An obvious 2-dimensional extension of the well-established l-dimensional quadrature 

formulae is used here. That is 
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and, finally 
N N  

k = l  j = 1  

In our analysis rk and s j  (k,j = 1,2,  ..., N )  are the roots of the N t h  order Legendre 

polynomial, P N ,  and Wk(k = 1,2,  ..., N )  are the appropriate weights for Gaussian 

quadrature, given by 
l l  

From (32) it is clear that the values of T are required at  the points ( r k , s j )  of the r - s 

coordinate system. Using the transformations (25) and (18), the corresponding points 

( s k j y y k j )  of the z - y coordinate system can be found. It is clear that 

There are N 2  points in each triangle. The value of N required to accurately calculate the 

integrals depends on the frequency and the surface of the reflector. It is found that if the 

reflector has extensive distortions, a large N is required. 

One subtle point needs to be mentioned here. Since the square domain D,, and the 

basic triangle domain D,, are fixed and kept the same for all z - y triangles, the limits of 

integration in (28) and (29) are desired to stay fixed. As a consequence, A, B, and C must 

be in a counter-clockwise sense. It is important that the vertices of all the D,, triangles be 

arranged in the same rotational sense. If instead of the counter-clockwise sense presented 

here, a clockwise sense were chosen, then the Jacobian J ( z )  would need a sign reversal 

to ensure the correct result. 

To recapitulate, the projection, 0, of the reflector on the z - y plane is divided in a 

number of triangles. The integrals of Equations (15)-( 17) are decomposed into summations 

of integrals over the aforementioned triangles. For each triangle, the points ( s k j ,  Y k j  are 
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found by applying (25) and (18). Then, the quadrature formula (32) is used to evaluate 

the contribution of each triangle to the total integral. Finally, all these contributions are 

added together to yield approximate values for E,,, E,, and ESz .  

Oblique Incidence 

The generic geometry presented in the second section can be used to solve the problem 

of the scattered fields of a given reflector under oblique incidence. To demonstrate this 

assertion, consider a coordinate system Ozy  z ,  attached to the reflector. The relative 

orientation of the reflector system, Oxy z ,  and the incident wave system, Osyz, is described 

by the Euler angles e,+ and $J as shown in Figure 4.  

“N 

“N 

To solve for the scattered fields under these circumstances, we make use of the fact 

that  g(z,y) in Equation (1) is arbitrary. If the reflector in its own coordinate system is 

described by = g(z,y), then we can express this reflector in Osyz and then use the 

analysis of Section 2. To do this we perform three rotations. First a positive rotation 

about 0; by 4. This rotation moves 0; to a new position O i ’ .  The second rotation is 

about 0;‘ by + 8 .  This rotation aligns the optical axis of the reflector with 02. Finally, 

a third rotation about Oz by an amount $J is required to align 0;’ with Oy and thus take 

care of the polarization. 

N N  

The sequence of rotations is shown in Figure 5. To demonstrate the use of these 

rotations, consider the following special cases. 

1. Incident wave E1 on the O z i  plane and H c  field perpendicular to the 0 :g plane (see 

Figure 6). Thus, 4 = 0 and $J = 0. 
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2. Propagation along the negative 0 axis (see Figure 7).  Thus, 8 = 0, 4 = 0, and 

$ = $. Please note that you need to rotate the 0 s y z  system to make it align 

with the Osyz system. Furthermore, the values of 0 , 4 ,  and $ have to be positive for 

counterclockwise rotations and negative for clockwise ones. 

“N 

0 
1 
2 

Numerical Examples 

0 1 
1 np = 3 
2 2np = 6 

In an experimental application of the analysis presented above, the coordinates of the 

target points would be measured and provided as data to the developed computer code. 

Since this report does not involve experimental studies, an analytical method is needed to 

generate the coordinates of the target points. First we distribute the projections of the 

target points onto the 0;; plane. We do this by locating all of these points on circles of 

successively increasing radius up to a given value. The number of points on each circle 

also increases as we move outwards. This scheme of discretization is suitable for circular 

aperture reflectors and is shown in Figure 8. In this discretization example, we have used 

four circles with radius and points as follows. 

3 

1 Circle # I Radius I Points on Circle I 

3 2( 2np) = 12 

This scheme provides us with the coordinates of the target points. To complete the 

description of the surface of the reflector, a function is needed to generate the 2 coordinates 

of the targets. For all the examples presented in this section, the target points lay on a 

12  
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surface generated by the function 

Clearly, Equation (35) represents an ideal paraboloid of focal length, F ,  that is perturbed 

by a Gaussian “bump” of height, A I ,  steepness, A z ,  located at  the point (z, y) = (A3 ,  A4) .  

For A I  = 0 Equation (35) represents an ideal parabolic reflector of diameter, D. We are 

primarily interested in the fields of the focal region. The observation points in this section 

will be assumed to be distributed on a line segment of electrical length pt  that has its 

origin a t  the point O b  on the z-axis and is parallel the the 0;; plane (see Figure 9). 

N T V  

In Figure 10, the magnitude of the electric field components is shown for an ideal 

paraboloid with diameter, D = 2m, focal length, F = 1.19m, at frequency, f =SO0 MHz. 

The observation points are defined by $ob = 0 and = 20, Le., they lay on the Ob;  axis. 

In this example 4 = d = t,b = O ” ,  i.e., the coordinate systems Osyz and Osyz are identical. 

That  is the incident field is propagating along the negative 0; axis and has its H ( E )  field 

along the OG(0;) axis. It is clear from Figure 10 that the cross polar field, E,, is very weak, 

negligible in comparison to E,  and E,. In Figure 11, the magnitude of the electric field 

components of a perturbed version of the paraboloid of the previous example is shown. 

The characteristics of the perturbation are A1 =O.lm, A2 = -3, and A3 = A4 =0.2m. A 

comparison between Figure 10 and 11 reveals that the surface perturbation has quantitative 

effects on the focal region fields. First, the co-polar component has a maximum decreased 

by 10% from the corresponding value of the ideal surface case. Second, the cross-polar 

level is somewhat increased and third, the E, component is no longer zero at the point o b .  

In Figure 12, the magnitude of the normalized electric field components of the same 

distorted reflector used in Figure 11 is shown. The only difference between Figure 11 and 

12 is the frequency. In Figure 11, the frequency is 5 GHz. The observation points are 

N N N  

-- 
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again distributed on the O b ;  axis and p1 is the same as earlier ( D l  = 20+ 1 x 20 cm). 

As is expected, because of the higher frequency, the bump on the surface of the reflector 

has more severe effects now than in Figure 11. To illustrate this, we compare the focal 

fields of the distorted reflector with the fields of the ideal reflector at  f = 5 GHz. This 

comparison is depicted in Figures 13a-13f. From Figure 12, we see that the cross-polarized 

field component (Ey) is eight times smaller than the coplanar component or, down by 18 

dB. We also see that, as in Figure 11, the axial field at  the point o b  is not zero when the 

surface has been distorted. Furthermore, we note that the phase of the cross-polar field 

component of the ideal surface parabolic reflector is not significant since the magnitude of 

the cross-polar field is zero (Figure 13b). Because of this fact, the phase of the cross-polar 

component of the ideal reflector is shown to exhibit a rather large numerical inaccuracy 

(Figure 13e). We may also point out that there is a significant increase (from 3.5 to 37) 

of the normalized coplanar component when we go from f = 500 MHz to f = 5 GHz (see 

Figures 10 and 13a). This is in accord to the well known limit of infinite focal fields at  the 

Geometric Optics (GO) approximation. 

Exactly the same number of target points has been used for all of the examples 

presented above. Furthermore, the coordinates of these points in the 0:c plane were 

also exactly the same. This enabled us to compare the results of the various test cases 

used. It is important to realize that, in general, the domain-wise 5th degree polynomial 

interpolation only approximates the surface of the reflector. As a consequence, if  one uses 

two different sets of s-y coordinates of target points to represent a given reflector surface 

(for example given by Equation (35)), different scattered fields will be obtained under 

the same conditions of illumination. This problem, however, can be solved very easily by 

increasing the number of target points to achieve good polynomial representation of the 
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reflector surface. Numerical verification of this solution has been done, and we have found 

that the higher the frequency, the larger the number of target points required to represent 

the reflector in order to achieve convergence of the scattered fields. 

At f = 35 GHz, and when the propagation is along the optical axis, the focal region 

1 fields of ideal parabolic receiving antennas obtained by the method of the present report 

have been found in complete agreement with the numerical results obtained by a different 

method (expansion in spherical wave functions) as in [ 131. For arbitrary illumination 

and/or reflectors, however, we have not found studies by other researchers to cross-examine 

our numerical results. 

In these cases, the scattered fields at  a few observation points are calculated using 

various densities of points in the Gaussian quadrature (this is equivalent to varying N in 

Equation (32)) until convergence is achieved. For a given frequency, we have found that 

the smoother the surface of the reflector (the smaller AI in Equation (35)), the smaller N 

is required for convergence of the fields. To demonstrate this process, the ideal parabolic 

reflector used earlier (D = 2m, F = 1.19m) is subject to obliquely incident illumination 
" N  

(0 = S 0 , 4  = O,$ = 0). In contrast to the previous examples, now the antenna (Ozyz) 

and the ray (Ozyz) coordinate systems are not identical. The normalized incident field, 

E /Eo in the two systems is 

N N N  

-i 

The observation points are distributed on the negative z-axis, i.e., &, = 180" and pl  = 

20-+ N 20 cm. The geometry is shown in Figure 14. The magnitude of the normalized 

electric field components in the antenna coordinate system is plotted in Figures 15, 16, 

and 17 for various values of N = ng. From these figures, it is evident that convergence is 
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achieved very quickly. Note that the ;-component is the smallest of all; about four orders 

of magnitude smaller than the components. Convergence of the i-component is, 

however, still very rapid. In Figure 15, we observe that the scattered field has a maximum 

at a distance GO = -11.2 cm. If we interpret this in degrees from the optical axis, we find 

that the maximum of the scattered field occurs at  an angle, 80, where 

and 

N 

90 = tan 1 ? I  N 5.38" . (37) 

This was expected, since the angle of incidence, 0, is 0 = 5 ' .  

As an additional example, consider the previous case when the reflector is distorted 

by a bump located at  the origin. The surface of the reflector is described by Equation 

(34) with parameters D = 2m, F = 1.19m; AI = O.lm, A2 = -3, A3 = 0, and A4 = 0. 

The frequency is again f = 5 GHz, and the incident illumination is described by Equation 

(36 ) ;  i.e., 9 = 5',4 = O,$J = 0. The magnitude of the normalized components of the 

scattered field on the negative ;-axis ($ob = 180°,p! = 20) is shown in Figures 18, 19 

and 20 for various N = ng. The convergence is achieved rapidly, especially for the major 

components of the field (EN and E-) .  Comparing the undistorted (Figure 15, 16, and 17) 

with tl-e distorted (Figure 18, 19, and 20) we observe that the largest field component, 

E- ,  suffers a severe reduction (by a factor of 5) From its level at  the absence of distortion. 

The E.; component suffers a comparable reduction. Moreover, the level of the smallest 

field component, EN, is increased (by an order of magnitude) due to the distortion. 
Y 

The parameter AI = O.lm used in the examples of distorted reflector examples is 

a rather extensive distortion, since it represents 10% of the radius of the reflector. In 

practical applications less severe distortions are expected. The higher the frequency, f, 

the larger the angle of incidence, 0, the larger N is required to achieve convergence. 
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Conclusions 

A straightforward method to calculate the magnitude and ph se of all three com- 

ponents of the focal region field scattered by an arbitrary reflector under plane wave 

illumination is presented. Discretization of the surface of the reflector and subsequent 

interpolation by fifth degree bivariate polynomials is made. The current induced on the 

reflector is evaluated by the PO approximation. The scattered field is given in an integral 

expression that involves no Fresnel or Fraunhofer zone approximations. A novel approach 

to the problem of numerical integration of the integrals is discussed. This method is based 

on a 2-dimensional Gaussian quadrature and provides a high degree of flexibility since 

the density of the sample points can be varied interactively as to adapt to the accuracy 

needs of the specific application. Several examples of distorted and undistorted parabolic 

reflectors are presented. The behavior of the scattered field with frequency and angle of 

incidence is discussed. 
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Figure 1. l j rb i t ra ry  Reflector Geometry 
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Figure 2. Reflector  Discre t iza t ion  
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Figure 3 .  Successive mapping of an a r b i t r a r y  t r i a n g l e  
cn to  a bas ic  one and, then,  a square 
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Figure  4. Relat ive o r i e n t a t i o n  of antenna and ray 
coordinate  systems. 



Figure 5. Euler's angles 8, 0 and JI define the  
relative orientation between the antenna 
and the ray coordinate sys tem.  



Figure 6. Geometry for example I (sec t ion  
on obl ique incidence) 
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Figure 7 .  Geometry f o r  example I1 (Section 
on oblique incidence) 



Figure 8. Discre t iza t ion  Scheme 



Figure 9. OOb, OOb and !L are the parameters used 

to define the distribution of the observation 
points 
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Figure 10. Normalized E .  Observation points on the Oz axis. 
f = 500 MHz, D = 2m, F = 1.19m, p! = 20, 
oob = F ,  6 = 4 = $ = 0. A i  = A2 = A3 = A4 = 0. 
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Figure 12. Normalized E.  The distorted reflector of Figure 11 at f = 5 GHz. 
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Figure 13a. Normalized JE,I of ideal and distorted reflectors. 
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Figure 13c. Normalized /E,[  of ideal and distorted reflectors. 
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Figure 13d. Phase of coplanar component of ides1 and distorted reflectors. 
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Figure 13e. Phase of cross-polar component of ideal and distorted reflectors. 
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Figure 14. Oblique Incidence at f = 5 GHz. 8 = so, 4 = 0,  $J = 0.  
D = 2m, p-t = 20, oob = F = 1.19m. 
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Figure 15. Normalized IEzI. Oblique incidence (8 = 5" , C$ = 0,  $J = 0 ) .  
D = 2m, F = 1.19m, A1 = A2 = AB = A4 = 0. 
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Figure 16. Normalized IEiI. Oblique incidence (6 = So, 4 = 0,  II, = 0) .  
D = 2m, F = 1.19m, AI = A2 = A3 = A4 = 0.  
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Figure 17. Normalized IEGI. Oblique incidence (6' = 5" , 4 = 0,  1c, = 0) 
D = 2m, F = 1.19m, A I  = A2 = A3 = A4 = 0. 
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Figure 18. Normalized \E:\. Oblique incidence ( e  = 5" , 4 = $ = 0). 
D = Zm, F = 1.19m, A1 = O.lm, A2 = -3, A3 = A4 = 0. 
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Figure 19. Normalized [E; / .  Oblique incidence ( 6  = 5" , $I = $ = 0). 
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Figure 20. Normalized IE;I. Oblique incidence (0  = 5" , 4 = $ = 0). 
D = 2m, F = 1.19m, A I  = O.lm, A2 = -3, A3 = A4 = 0. 
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FORTRAN SUBROUTINE JOORAN 

SUBROUTINE JOORAN CALCULATES THE THREE COMPONENTS OF THE 
ELECTRIC FIELD SCATTERED FROM A PERFECT CONDUCTOR OF ARBI- 
TRARILY SHAPED SURFACE. THIS SURFACE IS SPECIFIED BY A 
SET OF TARGET POINTS. THE INCIDENT WAVE IS ASSUMED TO BE A 
PLANE WAVE WITH ORIENTATION DEFINED BY THREE EULERIAN 
ANGLES WITH RESPECT TO THE COORDINATE SYSTEM OF THE 
REFLECTOR. IT IS IMPORTANT TO MENTION THAT THE FIELD CAL- 
CULATED HERE IS NORMALIZED TO THE MAGNITUDE OF THE ELEC- 
TRIC FIELD OF THE INCIDENT WAVE. THE PLANE PERPENDICULAR 
TO THE DIRECTION OF PROPAGATION AND PASSES THROUGH THE 
ORIGIN IS THE ZERO PHASE PLANE. THE METHOD USED IS BASED 
ON A PHYSICAL OPTICS ANALYSIS. EDGE EFFECTS ARE INCLUDED 
IN THE SENSE THAT THE EFFECTS OF THE CHARGE AT THE BOUN- 
DARY OF THE ILLUMINATED SURFACE OF THE REFLECTOR HAVE BEEN 
COSIDERED (SEE SILVER "Microwave Antenna Theory and 
Design" section 5 . 8 ,  Equations 6 2 - 6 9 ) .  FOR A DETAILED 
DESCRIPTION OF THE METHOD PLEASE, REFER TO THE REPORT 
ACCOMPANYING THIS SOURCE CODE. THIS CODE WAS DEVELOPED AT 
NORTH CAROLINA STATE UNIVERSITY BY DR. NICK E. BURIS AND 
DR. J. FRANK KAUFFMAN . SUPPORT FOR THIS STUDY WAS KINDLY 

IS WRITTEN SO THAT IT CAN BE MODIFIED WITH THE MINIMUM 
POSSIBLE EFFORT. QUESTIONS ON THE OPERATION OF THIS CODE 
MAY BE ADDRESSED TO : 

OFFERED BY A NASA-LANGLEY RESEARCH CENTER GRANT. THIS CODE 

Nick E. Buris 
University of Massachusetts 
Dept. of  Electrical and Computer Eng. 
Marcus Hall Rm 2 0  
Amherst, MA 0 1 0 0 3  
tel # ( 4 1 3 )  5 4 5 - 2 1 7 0  

ATTENTION : ALL LENGTHS IN METERS, FREQUENCY in MHz. 
SUBROUTINE JOORAN USES SUBROUTINE IBIRAN, 
THEREFORE, WHEN COMPILING MAKE SURE THAT 
YOU LINK TO A COMPILED VERSION OF IBIRAN. 

ARGUMENT DESCRIPTION 

nd 

xdtil 

ydtil 

zdtil 

nob 
xotil 

INPUTS 

number of target points specifying the reflector 
( nd must be grater than 3 ) 
real array of dimension nd; (x coordinates of  
target points) 
real array of dimension nd; (y coordinates of 
target points) 
real array of dimension nd; ( z  coordinates of 
target points) 
number of observation points 
real array of dimension nob; (x coordinates of 



A2 

yotil 

zotil 

ald 
a2d 
a3d 
f req 
ngauss 

Estil 

wk 
iwk 
xd 

zd 
xob 

zob 
X 
Y 
z 
ZX 
Ro 
SCAl 
SCA2 
SCA3 
9W 
gz 

Yd 

YOb 

U 
V 

observation points) 
real array of dimension nob; (y coordinates of 
observation points) 
real array of dimension nob; ( z  coordinates of 
observation points) 
Eulerian angle theta in degrees 
Eulerian angle phi in degrees 
Eulerian angle psi in degrees 
real variable ; frequency in MHz 
integer variable that determines the density of 
points used in the Gaussian Quadrature method of 
numerical integration. The larger ngauss the better 
the approximation. Available ngauss=4,6,8,10,12,16,48. 
In the report, N and ng are used for ngauss. 

OUTPUT 

Complex array of  dimension (3,nob). It contains the 
values of the scattered Electric field. 
Estil(j,k) = j-th component of E at k-th observ. point 

j = 1 => Ex, j =  2 => Ey, j = 3 => Ez 

WORK ARRAYS (OUTPUTS) 

real array of dimension 14*nd 
integer array of dimension 31*nd+l 
real array of dimension nd 
real array of dimension nd 
real array of dimension nd 
real array of dimension nob 
real array of dimension nob 
real array of dimension nob 
real array of dimension (ngauss,ngauss) 
real array of dimension (ngauss,ngauss) 
real array of dimension (ngauss,ngauss) 
real array of dimension (ngauss,ngauss) 
real array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
double precision real array of dimension ngauss 
double precision real array of dimension ngauss 
real array of dimension ngauss 
real array of dimension (ngauss,ngauss) 

TO USE JOORAN SIMPLY CALL IT WITH A CALL STATEMENT LIKE 

call Jooran(nd,xdtil,ydtil,zdtil,nob,xotil,yotil,zotil, 
1 ald,a2d,a3d,freq,ngauss,Estil, 
2 wk,iwk,xd,yd,zd,xob,yob,zob,x,y,z,zx,Ro,SCAl,SCA2,SCA3, 
3 gw,gz,u,v) 
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The first two lines of arguments contain the input argu- 
ments and the output argument Estil. The last two lines 
of arguments contain work arrays. The general user need 
not worry about these arrays. However, if changes in the 
program are needed for extensions and/or modifications, 
then the user should consult the theoretical part of this 
report and keep in mind that : 

xd,yd and zd are the coordinates of  the target points in the 
ray system ( OXYZ ) .  
xob,yob and zob are the coordinates of the observation points 
in the ray system ( OXYZ ) .  
x,y,z,zx contain the values of x,y,z and Zx at the points defined 
by the grid ngauss X ngauss on each individual triangle. These 
values are used in the numerical integration scheme. 
Ro contains the values of the distance of the current observation 
point from each of the point of the grid mentioned in 3. 
SCA1,SCAz and SCA3 cgntain some common factors that appear in 
the integral expressions for all the three components of the 
Electric field. Again, these values are calculated at the points 
of the grid mentioned in 3 .  
gw,gz are the weights and the zeros of Legendre polynomials 
used in the Gaussian Quadrature integration. 
u,v are the coordinates of the points of the grid mentioned in 3 
expressed in the u-v coordinate system. In this coordinate system 
all the individual triangles are mapped onto a basic triangle. 
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A s  an example of using Jooran consider the following data file 

5000.000 frequency in MHz 
4 one of (4,6,8,10,12,16,48) 

5.000000 O.oOOOOOOE+OO O.OOOOOOOE+OO Euler angles 
22 # of  target points 

0.0000000000000000E+OO O . ~ ~ O O ~ O ~ ~ ~ O O O O O ~ O E + O O  0.0000000000000000E+OO 
0.3333333333333333 O.OOOOOO0000OOO000E+OO 2.1367522151277409E-02 
-0.1666666666666667 0.2886751345948129 2.136752215127741OE-02 
-0.1666666666666667 -0.2886751345948129 2.1367522151277409E-02 
0.6666666666666667 O.OOOOOOOOOOOOOOOOE+OO 8.5470088605109637E-02 
0.3333333333333333 0.5773502691896258 8.5470088605109636E-02 
-0.3333333333333333 0.5773502691896258 8.5470088605109639E-02 
-0.6666666666666667 -2.9379182519358776E-17 8.5470088605109637E-02 
-0.3333333333333333 -0.5773502691896258 8.5470088605109637E-02 
0.3333333333333333 -0.5773502691896258 8.5470088605109639E-02 
1.000000000000000 O.OOOOOOOOOOOOOOOOE+OO 0.1923076993614967 
0.8660254037844387 0.5000000000000000 0.1923076993614967 
0.5000000000000000 0.8660254037844386 0.1923076993614967 
-2.2034386889519082E-17 1.000000000000000 0.1923076993614967 
-0.5000000000000000 0.8660254037844387 0.1923076993614967 
-0.8660254037844386 0.5000000000000000 0.1923076993614967 

-0.8660254037844387 -0.5000000000000000 0.1923076993614967 
-0.5000000000000000 -0.8660254037844386 0.1923076993614967 
-7.2674717409587322E-17 -1.000000000000000 0.1923076993614967 
0.5000000000000000 -0.8660254037844387 0.1923076993614967 
0.8660254037844386 -0.5000000000000001 0.1923076993614967 

-1.000000000000000 -4.4068773779038163E-17 0.1923076993614967 , 
2 (nob # of observation points) 

0.0000000000000000E+OO 0.0000000000000000E+OO 1 . 2 9 9 9 9 9 9 5 2 3 1 6 2 8 4  
4.7746483236551285E-02 O.OOOOOOOOOOOOOOOOE+OO 1.299999952316284 
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This data file, nasa87.dat' is input to the following progra'm : 

real x d t i 1 ( 2 0 0 ) , y d t i 1 ( 2 0 0 ) , z d t ~ 1 ( 2 0 0 )  
real xoti1(50),yoti1(50),zotil(50) 
real x d ( 2 0 0 ) , y d ( 2 0 0 ) , z d ( 2 0 0 ~ , ~ ~ ~ ~ ~ * ~ 0 0 )  
real Xob(50),Yob(5O),Zob(50) 
complex Esti1(3,50) 
integer nd,iwk(31*200+1*1) 

complex SCA1(48,48),SCA2(48,48) 
complex SCA3(48,48) 
dimension gw(48),gz(48),~(48),~(48,48) 
double precision gw,gz 

open(l,file='nasa87.datr) 
read(l,*)freq 
read(l,*)ngauss 
read(l,*)ald,a2d,a3d 
read(l,*)nd 
do 1 k=l,nd 
read(l,*)xdtil(k),ydtil(k),zdtil(k) 

read(l,*)nob 
do 2 k=l,nob 
read(l,*)xotil(k),yotil(k),zotil(k) 

1 continue 

2 continue 

call Jooran(nd,xdtil,ydtil,zdtil,nob,xotil,yotil,zotil, 
1 ald,a2d,a3d,freq,ngauss,Estil, 
2 wk,iwk,xd,yd,zd,xob,yob,zob,xly,z,zx,Ro,SCAl,SCA2,SCA3, 
3 gw,gzIu,v) 

open(2,file='nasout.datr) 
write(2,*)' ',nab,* # of observation points' 
do 3 k=l,nob 
write(2,")' ',xotil(k),',',yotil(k), 
$',',zotil(k),' Xotil,Yotil,Zotil' 
write(2,*)' ',Estil(l,k),'Extil' 
write(2,*)' ',Esti1(2,k),'Eytilr 
write(2,*)' L,Estil(3,k),tEztil' 

3 continue 
stop 
end 
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The output is sent to the file "nasout.dat" 

2 # of observation points 
O . O O O o o O O E + O O ,  O . O O O O O O O E + O O ,  1.300000 Xotil,Yotil,Zotil 
(-1.501289,-0.8454167)Extil 
(-7.9167667E-O6,1.5168914E-O4)Eytil 
(0.2458099,-0.583402O)Eztil 
4.7746483E-02, 0 . 0 0 0 0 0 0 0 E + 0 0 ,  1.300000 
(0.6274602,0.1810894)Extil 
(-1.3166843E-O3,-4.8433035E-O4)Eytil 
(-0.1880506,0.5139895)Eztil 

xotil,Yotil,Zotil 
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Figure 11. Normalized E.  Observation points on the O s  axis. 
f = 500 MHz, D = ?m, F = 1.19m, 
OOa = F ,  0 = q5 = $'= 0. 

= 20, 
A I  = O.lm, A2 = -3, A3 = 0.2m, A4 = 0.2m. 
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APPENDIX B 
------------ 

SUBROUTINE JOORAN FORTRAN CODE 



C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C THE FOLLOWING SUBROUTINE CALCULATES THE THREE COMPONENTS OF THE * 
C THE INCIDENT WAVE IS ASSUMED TO BE A PLANE WAVE WITH ORIENTATION* 

C AXIS OF THE REFLECTOR. IT IS IMPORTANT TO NOTE THAT THE FIELDS * 
C INCIDENT WAVE. THE PLANE PERPENDICULAR TO THE DIRECTION OF PRO-* 
C PAGATION AND PASSES THROUGH THE ORIGIN IS THE ZERO PHASE PLANE. * 
C THE METHOD USED IS BASED ON A PHYSICAL OPTICS ANALYSIS AND EDGE * 
C EFFECTS ARE INCLUDED. FOR A DETAILED DESCRIPTION OF THE METHOD,* 
C PLEASE REFER TO THE REPORT ACCOMPANYING THIS SOURCE CODE . * 
C THIS CODE WAS DEVELOPED AT NORTH CAROLINA STATE UNIVERSITY BY * 
C DR. NICK E. BURIS AND DR. J. FRANK KAUFFMAN . SUPPORT FOR * 
C THIS STUDY WAS KINDLY OFFERED BY A NASA-LANGLEY RESEARCH CENTER * 
C GRANT. * 

C ELECTRIC FIELD SCATTERED FROM AN ARBITRARY PERFECT CONDUCTOR . * 
C DEFINED BY THREE EULERIAN ANGLES WITH RESPECT TO THE OPTICAL * 
C ARE NORMALIZED TO THE MAGNITUDE OF THE ELECTRIC FIELD OF THE * 

C 
C 
C 
C 
C 
C 
C 

THIS CODE IS WRITTEN SO THAT IT CAN BE MODIFIED WITH THE MINIMUM* 
POSSIBLE EFFORT. * 

nd 
xdtil 

ydtil 

zdtil 

nob 
xotil 

yotil 

zotil 

ald 
a2d 
a3d 
f req 
ngauss 

Estil 

wk 

* 
* 

DESCRIPTION * 
INPUTS * 

_ - u - _ - u . - . - u u  * 
* 

number of target points defining the reflector * 
real array of dimension nd; ( x  coordinates of * 
target points) * 
real array of dimension nd; (y coordinates of * 
target points) * 
real array of dimension nd; ( z  coordinates of * 
target points) * 
number of observation points * 
real array of dimension nob; ( x  coordinates of * 
observation points) * 
real array of dimension nob; (y coordinates of * 
observation points) * 
observation points) * 
Eulerian angle theta in degrees * 
Eulerian angle phi in degrees * 
Eulerian angle alpha in degrees * 
real variable ; frequency in MHz * 
integer variable that determines the density of * 
points used in the Gaussian Quadrature method of * 

real array of dimension nob; ( z  coordinates of * 

numerical integration. The larger ngauss the better * 
the approximation. Available ngauss=4,6,8,10,12,16,48.* 

OUTPUT * 
Complex array of dimension (3,nob). It contains the * 
values of the scattered Electric field. * 
Estil(j,k) = j - t h  component of E at k-th observ. point* 

WORK ARRAYS * 
j = 1 => Ex, j = 2 => Ey, j = 3 => Ez * 
real array of dimension 14*nd * 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

integer array of dimension 31*nd+l 
real array of dimension nd 
real array of dimension nd 
real array of dimension nd 
real array of dimension nob 
real array of dimension nob 
real array of dimension nob 

X 'real array of dimension (ngauss,ngauss) 
real array of dimension (ngauss,ngauss) 

z real array of dimension (ngauss,ngauss) 
zx real array of dimension (ngauss,ngauss) 

real array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
complex array of dimension (ngauss,ngauss) 
double precision real array of dimension ngauss 
double precision real array of dimension ngauss 

C iwk 
C xd 
C Yd 
C zd 
C xob 
C YOb 
C zob 
C 
C Y 
C 
C 
C Ro 
C SCAl 
C SCA2 
C SCA3 
C gw 
C gz 

U real array of dimension ngauss 
V real array of dimension (ngauss,ngauss) 

subroutine ~ooran(nd,xdtil,ydtil,zdtil,nob,xotil,yotil~zot~l~ 

C 
C 
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 ald,a2d,a3d,freq,ngauss,Estil, 
2 wk,iwk,xd,yd,zd,xob,yob,zob~x~y,z~zx,Ro,SCA1,SCA~~SCA3, 
3 gw,g~,u,v) 
real xdtil(nd),ydtil(nd),zdtil(nd) 
real xotil(nob),yotil(nob),zotil(nob) 
real xd(nd),yd(nd),zd(nd),xiryi,zi,wk(14*nd) 
real Xob(nob),Yob(nob),Zob(nob) 
complex Estil(3,nob) 
integer nd,iop(2),iwk(31*nd+l*l),ierr,nxilnyi 

real x(ngauss,ngauss),y(ngauss,ngauss),z(ngauss,ngauss) 
real zx(ngauss,ngauss) 
real Ro(ngauss,ngauss) 
complex SCAl(ngauss,ngauss),SCA2(ngauss,ngauss) 
complex SCA3(ngaussIngauss) 
dimension gw(ngauss),gz(ngauss),u(ngauss),v(ngauss,ngauss) 
double precision gw,gz 
common /observ/ Xo,Yo,Zo,beta 
COMMON /IBCDPT/ X ~ , Y ~ , A P , B P , C P , ~ P , P ~ ~ ~ ~ ~ ~ ~ P ~ ~ , P ~ ~ , P ~ ~ , ~ ~ ~ ~  
1 P01,Pll,P21,P31,P41,P02,P12,P22,P32,Po3,P~31 
2 P23,P04,P14,P05,ITPV 

common /vertex/ xl,x2,~3,yl,y2,y3 
complex JKRZ 
complex Ex,Ey,Ez,Extot,Eytot,Eztot,Exknt,Eyknt,Ezknt 
external Ex,Ey,Ez 

pi=acos(-1.0) 

alr=ald*.pi/l80. 
a2r=a2d*pi/180. 

C Convert the angles from degrees into radians 



a3r=a3d*pi/180. 

cl=cos(alr) 
c2=cos(a2r) 
c3=cos(a3r) 
sl=sin(alr) 
s2=sin(a2r) 
s3=sin(a3r) 

R12=~3*~2*cl+s3*~2 

C Now calculate the elements of the Rotation Transformation Matrix, Rij 

R l l = C 3 * ~ 2 * ~ 1 - ~ 3 * ~ 2  

R13=-C3*SI 
R 2 1 = - ~ 3 * ~ 2 * ~ 1 - ~ 3 * ~ 2  
R 2 2 = - ~ 3 * S 2 * ~ 1 + ~ 3 * ~ 2  
R2 3=s 3 * s 1 
R31=sl *c3 
R32=~1* ~2 
R33-cl 

~ f f f f I I I I f I f I f f I f f I I f I f I f f f f f f I f f f f f f I f f f f f f f f f I f f f I f I I f I I f I I f f f f f I f f  1 
C Now Enter the Wavenumber 1 
C make sure that f is in MHz 1 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]  
beta=(2.*pi*freq)/300. 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]  

~ f f f f f f f f I f I f I f f I f f I f f f f f I I f f f I f I I I I I f f f I f I I f f I f ~ f f I f I I f f f f f f f f I I I f f f  1 
C Now Enter The Observation Points 1 
C read( 5 * ) nob 1 
C do 3 k=l,nob 1 
C read(S,*)Xob(k),Yob(k),Zob(k) I 
C 3 continue 1 

call rotate(xotil,yotilfzotilfxobfyob,zobfnobfalrfa2rfa3r) 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . ]  

~ f f f I I f f I f f f I f f f I f f I f f I I f f I I f f I I I I f f f ~ I I I f f f f f f f f f f f f f f f ~ f f f f ~ f f f f f f 1  1 
C 1 
C create the (r,s) pairs. These are the points where the 1 
C value of the integrand is needed in the r-s system. In 1 
C this system the triangular domain is the square (-1,l) X (-1,l). 

~ if(ngauss.eq.4) call gauss4(ngauss,gz,gw) 
if(ngauss.eq.6) call gauss6(ngauss,gzfgw) 

, if(ngauss.eq.8) call gauss8(ngauss,gz,gw) 
I 



if(ngauss.eq.10) call gauslO(ngauss,gz,gw) 
if(ngauss.eq.12) call gaus12(ngaussfgzfgw) 
if(ngauss.eq.16) call gaus16(ngaussfgzfgw) 
if(ngauss.eq.48) call gaus48(ngaussfgz,gw) 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]  

~ I I I I I I I I I I I I I I I I I I I I I I I I I I I ~ I ~ ~ ~ ~ ~ I I I I I ~ I I ~ I I ~ ~ ~ ~ I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  1 
C Create the [u,v] pairs. These are the points where the 1 
C value of the integrand is needed in the u-v system. In this 1 
C system the domain is a right triangular defined by the points : I 
C (XlfYl) <->  [ O f 0 1  (X2fY2) < - >  [1fOI (X3fY3) < - >  [O,ll 1 

call rstouv(ngaussfgzfufv) 
C I 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]  

C f f f f f l f f f f f l f f I f f f f f f f f f f f f f f f f f f f f f f f f f l f f f f f f f f f f f f f f f f f  1 
C Now run ibiran for the first time 1 
C Create the point mess 1 

iop( 1)=0 
iop( 2 ) = 0  
maxnxi=l 
nxi=l 
nyi-1 
xi=(xd(l)+xd(2)+xd(3)+xd(,4) )/4. 
yi=(yd(l)+yd(2)+yd(3)+yd(4) )/4. 

call i b i r a n ( n d f x d f y d f z d f i o p f m a x n x i f n x i f x i f n y i f y i f z i f i w k f w k f i e r r )  

nt=iwk( 5) 
C nl=iwk ( 6 ) 
C write(2,*)"# of triangles =",nt, nl ="fnl 
C 1 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]  

1 C f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f l f f f f f l f f f f f f f f f f f f f f  

C I 
C This is the l o o p  for each observation point 1 

do 6 lobe-1,nob 
Xo=Xob(lobe) 
Yo=Yob(lobe) 
Zo=Zob(lobe) 

Extot=(O.O,O.O) 
Eytot=(O.O,O.O) 
Eztot-(O.O,O.O) 

C f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ~ f f f f f f f f f f f f f f f f f f I f f f f  1 
1 

I C  1 
~c This is the LOOP that deals with each triangle 



I C  

, c 
C- I C  

The barycentric point is found of each triangle and 1 

ficients of the polynomial in the u-v system at the 1 
triangle in question. 1 

the ibiran is called in order to calculate the coef- ] 

do 5 knt=l,nt 

iop(l)=O 
iop( 2 ) =2 
nxi-1 
nyi=1 
maxnxi=l 
kk=15+3*knt 

xl=xd(iwk(kk-2)) 
yl-yd(iwk(kk-2)) 
x2=xd(iwk(kk-l)) 
y2-yd(iwk(kk-l)) 
x3=xd(iwk(kk)) 
y3=yd(iwk(kk)) 

a=x2-xl 
b=x3-~l 

d=y3-yl 
c=y2-yl 

abcd= a*d - b*c 

UparX= d / abcd 
VparX- -c / abcd 

The coordinates of the Barycentric point of the knt-th ] 
triangle follow 1 
xbaryc = ( x l  + x2 + x3) / 3.0 
ybaryc = (yl + y2 + y3) / 3.0 

Run IBIRAN in order to create the coefficients of the poly- ] 
nomial that describes the surface in the u-v system. To make] 
sure that the correct triangle is considered IBIRAN is asked ] 
to run f o r  the BARYCENTRIC POINT of the triangle. This point] 
lies in the triangle no matter what . . . . . . . . . . . . . . . . . . . . . . .  ] 

call ibiran(nd,xd,yd,zd,iop,maxnxi,nxi,xbaryc,nyi,ybaryc, 
1 zbaryc,iwk,wk,ierr) 

I 
Create the (x,y) pairs. These are the points where the 1 
value of the integrand is needed in the x-y system. In I 
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C 
C 
C 

this system the triangular domain is defined by the points J 
(x1,yI)t (x2,y2) and (x3,y3) 1 

1 
call uvtoxy(ngauss,x,y,u,v,xl,x2,~3,yl,y2,y3) 

1 
Create the Z and Zx values. Z(k,j) is the value of 1 
the reflector surface Z=Z(x,y) calculated at the point 1 
x=x(k,j) , y=y(k,j) . Zx(k,j) is the value of the partial ] 
derivative of Z with respect to x at the aforementioned 1 
point - (x(k,j), y(k,j) - 1 

do 5 0  k=l,ngauss 
uk-u ( k ) 
do 49 j=l,ngauss 
vkj=v(k,j) 
asO=P00+ vkj*(POl+ vkj*(P02+ vkj*(P03+ vkj*(P04+ vkj*P05)))) 
asl=PlO+ vkj*(P11+ vkj*(P12+ vkj*(P13+ vkj*P14))) 
as2=P20+ vkj*(P21+ vkj*(P22+ vkj*P23)) 
as3=P30+ vkj*(P31+ vkj*P32) 
as4=P40+ vkj*P41 
Z(k,j)=asO+ uk*(asl+ uk*(as2+ uk*(as3+ uk*(as4+ uk*p50)))) 
Zu=asl+ uk*(2.*as2+ uk*(3.*as3+ uk*(4.*as4+ uk*S.*PSO))) 
asO=POl+ vkj*(2.*P02+ vkj*(3.*P03+ vkj*(4.*P04+ vkj*5.*P05))) 
asl=P11+ vkj*(2.*P12+ vkj*(3.*P13+ vkj*4.*P14)) 
as2=P21+ vkj*(2.*P22+ vkj*3.*P23) 
as3=P31+ vkj*2.*P32 
Zv=asO+ uk*(asl+ uk*(as2+ uk*(as3+ uk*P41 ) ) )  
Zx(k,j)= Zu*UparX + Zv*Vparx 

I 

49 continue I 50 continue 

~ 

C Create the array Ro(k,j). This array contains the distance 
C of the point ( x(k,j),y(k,j),z(k,j) ) from the observation 
C point ( Xo,Yo,Zo ) . 
C ALSO 
C Create the complex arrays SCA(k,j). These arrays contain ] 
C the common ceofficients in front of all the field compo- I 
C nents. 1 

do 58 k=l,ngauss 
do 5 7  j=l,ngauss 
Ro(k,j)=sqrt( (x(k,j)-Xo)*(x(k,j)-Xo) + 

RR=Ro(k,j) 
JKRZ=cmplx( 0.0, -beta * (RR-z(k,j)) 
SCAl(k,j)= cexp(JKR2) / RR 
SCA2(k,j)= cmplx(beta*beta - 3,0/(RR*RR), -3.O*beta/RR) * 

SCA3(k,j)= cmplx( l.O/(RR*RR)-beta*beta , beta/RR 

1 (y(k,j)-Yo)*(y(k,j)-Yo) + 
2 (z(k,j)-zo) *(z(k,j) -Zo) 1 

1 ( xo-x(k,j) + (Zo-z(k,j))*Zx(k,j) )/RR 
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I 5 7  continue 1 58 continue 

I c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
* 
* 

call ca~~nt(Ex,ngauss,x,y,zx,Ro,SCA1,SCA~,SCA2,SCA3,Exknt,gw,gz,u,v) 
call ca~int(Ey,ngauss,x,y,~,zx,Ro,SCA1,SCA2,SCA3,Eyknt,~w,gz,u,v~ 
call ca~int(Ez,ngauss,x,yIz,zx,Ro,SCA~,SCA2,SCA3,Ezknt,gw,gz,u,v~ 

* 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  I C  

Extot=Extot + Exknt 
Eytot=Eytot + Eyknt 
Eztot=Eztot + Ezknt 
Extot=Extot/cmplx(l.O I 2.0*pi*beta) 
Eytot=Eytot/cmplx(l.O I 2.0*pi*beta) 
Eztot=Eztot/cmplx(l.O I 2.0*pi*beta) 

I C  E s t i ~ ( l , l o b e ) = R 1 1 * E x t o t + R 2 ~ * E y t o t + R 3 1 * E z ~ o ~  
Estil(2,lobe)=R12*Extot+R22*Eytot+R32*Eztot 
Estil(3,lobe)=R13*Extot+R23*Eytot+R33*Eztot 

w r i t e ( 3 I * ) 'I 
w r i t e ( 3 , * ) I' 

wr i te ( 3 , * ) I t  

write(3,*)" ",Xotil(lobe),Yotil(lobe),Zotil(lobe) ,"coord. in til" 

write ( 3 I * ) " 
wr i t e ( 3 I * ) " 

5 continue 

C r P "  Transform the E-fields back to the tilded coordinate system 1 1 3 ' 1  1 
1 

c...............................................*.....................72 
I C  

C 
" , R 1 1 *  X o + R 2  1 * Y o+R 3 1 * Z o I I' c 0 r r e c t It 
" , ~ 1 2  * X o + R 2  2 *Yo+ R 3 2 * Z o , " c o 1: re c t 'I  

It I R13 *Xo+R2 3 *Yo+R3 3 * 2 0  I 'I co r r ec t I' 

C write(3,*)* ",Estil(l,lobe)," Esxtil" 
E sy t i 1 " C 

C write(3,*)" ",Estil(3,lobe) , I t  Esztil" 
I C  

I' I Es t i 1 ( 2 , 1 o be ) I It 

: E  
11 

' c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . , . , . . . . . . . . . . . . . . . . . . . ]  

~ 6 continue 

return 
end 

I c ..................................................................... 7 2  

C This subroutine rotates the antenna as well as the observation 
I C  points into the incident wave coordinate system ! 
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L 

subroutine rotate(Axt,Ayt,Azt,Ax,Ay,Az,n,a1,a2,a3) 
dimension Ax(n),Ay(n),Az(n),Axt(n)lAyt(n)lAzt(n) 

cl=cos(al) 
c2=cos(a2) 
c3=cos(a3) 
sl=sin(al) 
s2=sin(a2) 
s3=sin(a3) 
R l l = ~ 3 * ~ 2 * ~ 1 - ~ 3 * ~ 2  
R12=~3*s2*cl+s3*~2 
R13=-~3*sI 
R ~ ~ = - s ~ * c ~ * C I - C ~ * S ~  
R 2 2 = - ~ 3 * S 2 * ~ 1 + ~ 3 * ~ 2  
R2 3=s 3 *SI 
R31=sl*c3 
R32=Sl*s2 
R33=cl 
do 1 i=l,n 
Ax(i)= R11*Axt(i) + R12*Ayt(i) + R13*Azt(i) 
A y ( i ) =  R2l*Axt(i) + R22*Ayt(i) + R23*Azt(i) 
Az(i)- R31*Axt(i) + R32*Ayt(i) + R33*Azt(i) 

1 continue 

return 
end 

1 c . . . . . . . . . . . . . . . . . . . . . . . . . .  ..........................................* 72 
, 
I 

subroutine c a l i n t ( f , n , x , y , z , z x , R o ~ S C A 2 , S C A 3 , r e s u l t ~ g w ~ g z ~ u ~ v ~  
dimension u ( n ) l v ( n , n ) l x ( n , n ) , y ( n ~ n ~ l z ( n ~ n ) , z x ( n ~ n )  
real Ro(n,n) 
complex SCAl(n,n),SCA2(n,n),SCA3(nln) 
dimension gw(n),gz(n) 
double precision gw,gz 
COMMON /IBCDPT/ X O , Y O , A P , B P , C P , D P , P O ~ ~ P ~ ~ ~ P 2 0 ~ P 3 O ~ P 4 ~ ~ ~ 5 ~ ~  

! ~ 

I 

~ 1 P O 1 , P l l , P 2 1 , P 3 1 , P 4 1 , P O 2 ~ P l 2 ~ P 2 2 ~ P 3 2 ~ P O 3 , P l 3 ~  
2 P23,PO4,P14,PO5,ITPV I 

common /vertex/ xl,x2,~3,yl,y2,y3 
complex f,Tkj,result,res 
external f ! 

I 

C 
C This program calculates the double integral 
C 
C I = f(X,y,z,z~) dxdy on a triangular domain 
C 

where z=z(x,y) and zx is partialz/partialx (also function of x,y). 
The domain is determined by the vertices of the triangle 

C (x1,yl), (x2,y2) and (x3,y3) GIVEN COUNTERCLOCKWISE ! ! !  
C If the vertices are not arranged counterclockwise then 

1 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 

I 

~~ ~ ~~ ~ ~~ ~ 

the value of I is the opposite of what it sho 
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Id be ! ! ! !  

abcd as calculated below is the Jacobian of the mapping 
from the x-y to the u-v system. It is equal to the ratio 
of the areas of the triangular domain in the two systems. 
Since in the u-v system the triangle is always given by 
the points [O,O], [1,0] and [0,1], in this system its area 
is 1/2 . Thus, it is not a surprise that abcd equals twice 
the area of the triangle in the x-y system (defined by the 
points (xl,yl), (x2,y2) and (x3,y3) ) ..................... 

a=x2-xl 
b=x3-~l 

d=y3-yl 
c=y2-yl 

abcd- a*d - b*c 
if(abcd.eq.0.0) goto 666 

Calculate the-integral by using Gaussian Quadrature 
in 2-dimensions. For the algorithm see my notes. 

This part of the subroutine calculates the values of the function 
T(r,s) at the points that are used by the Gauss-Legendre 
quadrature method. These values are used in the main 
in a summation scheme to provide the approximation to the 
integral. Since in this program we have used m=n, r(k) 
and s(k) are exactly the same. For a more general approach 
read my notes. 

A very important note should be made here. abcd is the 
value of the Jacobian of the mapping from the x-y to u-v. 
Since abcd is not the absolute value of the Jacobian one needs 
to make sure that the points (xl,yl), (x2,y2) & (x3,y3) are 
ordered counterclockwise. For more details look up my notes. 

result=(0.0,0.0) 
res=(0.0,0.0) 
do 2 k=l,n 
do 1 j=l,n 
Tkj=0.125 * (l.-gz(k)) * abed * 

f ( x ( k, j ) , y( k , j , z ( k , j 1 , zx ( k j ,Ro ( k I j ) I 

res-res + gw(]) * Tkj 
result=result + gw(k) * res 
res=(0.0,0.0) 

1 
2 sCAl(k!]),sCA2(k,j),SCA3(k,j) ) 

1 continue 

2 continue 
go to 667 

666 write(O,*)"There is something wrong with the triangle.", 
lffColirieir vertices.lt 

667 continue 



return 
end 

a=x2-xl 
b=x3-~l 

d=y3-yl 
c=y2-yl 

abcd= a*d - b*c 

do 2 k=l,n 
do 1 j=l,n 
x(k,j)=xl + a * u(k) + b * v(k,]) 
y(k,l)=yl + c * u(k) + d * v ( k , ~ )  

1 continue 
2 continue 

~ return 
end 

subroutine rstouv(n,gz,u,v) 
dimension gz(n),u(n),v(n,n) 
double precision gz 

do 1 k=l,n 
u(k)=0.5 + 0.5*gz(k) 

1 continue 

do 3 k=l,n 
do 2 j=l,n 
v(k,j)=(l.O-gz(k)) * (l.o+gz(j)) / 4.0 

2 continue 
3 continue 

I return 

1 end 

complex function Ex(x,ytz,zx,Ro,SCAl,SCA2,SCA3) 
Here Ro and the SCA's are constants since Ex is called by 1 

common /observ/ Xo,Yo,Zo,beta 
complex SCAl,SCA2,SCA3 

x(k, j) ,y(k, j) ,z(k, j) ,zx(k, j) ,Ro(k,j) ,SCA's(k,j) 1 



I 

EXZSCAI * ( SCA~*(XO-X)/RO + SCA3 ) 
return 
end 

complex function E y ( x , y , z , z x , R o , S C A ~ , S C A 2 , S C A 3 )  
Here Ro and the SCA's are constants since Ey is called by 
x(k,j),y(k, j) ,z(k, j )  ,zx(k, j) ,Ro(k, j) ,SCA's(k,j) 
common /observ/ Xo,Yo,Zo,beta 
complex SCAlISCA2,SCA3 

Ey=SCAl * SCA~*(YO-~)/RO 
return 
end 

complex function Ez(x,y,z,zx,Ro,SCA~,SCA2,SCA3) 
Here Ro and the SCA's are constants since Ez is called by 
x(k, j),y(k,j) ,z(k, j) ,zx(k,j),Ro(k,j),SCA's(k,j) 
common /observ/ Xo,Yo,Zo,beta 
complex SCA1,SCA2,SCA3 

EZXSCA1 * ( SCA2*(Zo-z)/Ro + S C A ~ * Z X  ) 
return 
end 

subroutine gauss4(n,z,w) 
double precision z,w 
dimension z(n),w(n) 
n=4 
nn=n/2 

~(1)=.339981043584856dO 
2(2)=.861136311594053dO 

~(1)=.652145154862546dO 
w(2)=.347854845137454dO 

do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

do 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 
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C 
subroutine gauss6(n,z,w) 
double precision z,w 
dimension z(n),w(n) 
n=6 
nn=n/2 

do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

I do 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 

I C  
C 

subroutine gauss8(n,z,w) 
double precision z,w 
dimension z(8),w(8) i 

I 

The array z contains the zeros of the Legendre polynomial 
of the 8th degree. The array w contains the appropriate 

C weights for the Gaussian quadrature. The values of w(k) 
C are given by 
C 
C w(i)= 2 / ( (1-z(i)**2) * ( P'(z(i))**2 ) ) 

' C  

1 8  I C  

where P(z(i))=O i=1,2,. ..,8 
and P'(z)= dP(z)/dz I C  

I C  
I C  

n=8 
nn=n/2 
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do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

do 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 

C 
C 

subroutine gauslO(n,z,w) 
double precision z,w 
dimension z(n),w(n) 

n=10 
nn=n/2 

~(1)=.295524224714753dO 
~(2)=.269266719309996dO 
w(3)=.219086362515982dO 
w(4)=.149451349150581dO 
w(5)=.066671344308688dO 

do 1 k=l,nn 
z(nn+k)--z(k) 
w(nn+k)=w(k) 

do 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 

1 continue 



C 
C 

C I 
I C  
I C  
C 
C 
C 
C 
C 
C 
C 
C 
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subroutine gausl2(n,z,w) 
double precis.ion z ,w 
dimension z(n),w(n) 
n=12 
nn=n/2 

~(1)=.125233408.511469dO 
2(2)=.36783149899818OdO 
~(3)=.587317954286617dO 
2(4)=.769902674194305dO 
2(5)=.904117256370475dO 
2(6)=.981560634246719dO 

do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

do'2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 

subroutine gausl6(n,z,w) 
double precision z,w 
dimension z(8),w(8) 

The array z contains the zeros of the Legendre polynomial 
of the 16th degree. The array w contains the appropriate 
weights for the Gaussian quadrature. The values of w(k) 
are given by 

w(i)= 2 / ( (l-z(i)**2) * ( Pf(z(i))**2 ) ) 

where P(z(i))=O i=1,2, ..., 16 
and P'(z)= dP(z)/dz 

n=16 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

nn=n/2 

~(1)=.095012509836637440185dO 
~(2)=.281603550779258913230dO 
2(3)=.458016777657227386342dO 
2(4)=.617876244402643748447dO 
2(5)=.755404408355003033895dO 
2(6)=.865631202387831743880dO 
~(7)=.944575023073232576078dO 
2(8)=.989400934991649932596dO 

~(1)=.189450610455068496285dO 
~(2)=.182603415044923558867dO 
w(3)=.169156519395002538189dO 
~(4)=.14959598881657673208ldO 
w(5)=.124628971255533872052dO 
w(6)=.0951585116824927848lOdO 
~(7)=.062253523938647892863dO 
~(8)=.027152459411754094852dO 

do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

dr! 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 

return 
end 

subroutine gaus48(n,z,w) 

B15 

The array z contains the zeros of the Legendre polynomial 
o f  the 48th degree. The array w contains the appropriate 
weights for the Gaussian quadrature. The values of  w(k) 
are given by 

w(i)= 2 / ( (l-z(i)**2) * ( P'(z(i))**2 ) ) 

where P(z(i))=O i=1,2, ..., 48 
and P'(z)= dP(z)/dz 

dimension z(n),w(n) 
double precision z,w 
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n=48  
nn=n/2 

~ ( 1 )  = . 0 3 2 3 8 0 1 7 0 9 6 2 8 6 9 3 6 2 0 3 3 d O  
~ ( 2 )  = . 0 9 7 0 0 4 6 9 9 2 0 9 4 6 2 6 9 8 9 3 O d O  
~ ( 3 )  = . 1 6 1 2 2 2 3 5 6 0 6 8 8 9 1 7 1 8 0 5 6 d O  
z ( 4 )  = . 2 2 4 7 6 3 7 9 0 3 9 4 6 8 9 0 6 1 2 2 5 d O  
z ( 5 )  =.287362487355455576736dO 
z ( 6 )  = . 3 4 8 7 5 5 8 8 6 2 9 2 1 6 0 7 3 8 1 6 O d O  
~ ( 7 )  = . 4 0 8 6 8 6 4 8 1 9 9 0 7 1 6 7 2 9 9 1 6 d O  
z ( 8 )  = . 4 6 6 9 0 2 9 0 4 7 5 0 9 5 8 4 0 4 5 4 5 d O  
~ ( 9 )  = . 5 2 3 1 6 0 9 7 4 7 2 2 2 3 3 0 3 3 6 7 8 d O  
~ ( 1 0 ) = . 5 7 7 2 2 4 7 2 6 0 8 3 9 7 2 7 0 3 8 1 8 d O  . 
~ ( 1 1 ) = . 6 2 8 6 8 7 3 9 6 7 7 S 5 1 3 6 2 3 9 9 5 d O  
~ ( 1 2 ) = . 6 7 7 8 7 2 3 7 9 6 3 2 6 6 3 9 0 5 2 1 2 d O  
~ ( 1 3 ) = . 7 2 4 0 3 4 1 3 0 9 2 3 8 1 4 6 5 4 6 7 4 d O  
~ ( 1 4 ) = . 7 6 7 1 5 9 0 3 2 5 1 5 7 4 0 3 3 9 2 5 4 d O  
~ ( 1 5 ) = . 8 0 7 0 6 6 2 0 4 0 2 9 4 4 2 6 2 7 0 8 3 d O  
~ ( 1 6 ) = . 8 4 3 5 8 8 2 6 1 6 2 4 3 9 3 5 3 0 7 l l d O  
~ ( 1 7 ) = . 8 7 6 5 7 2 0 2 0 2 7 4 2 4 7 8 8 5 9 0 6 d O  
~ ( 1 8 ) = . 9 0 5 8 7 9 1 3 6 7 1 5 5 6 9 6 7 2 8 2 2 d O  
~ ( 1 9 ) = . 9 3 1 3 8 6 6 9 0 7 0 6 5 5 4 3 3 3 1 1 4 d O  
~ ( 2 0 ) = . 9 5 2 9 8 7 7 0 3 1 6 0 4 3 0 8 6 0 7 2 3 d O  
~ ( 2 1 ) = . 9 7 0 5 9 1 5 9 2 5 4 6 2 4 7 2 5 0 4 6 l d O  
2 ( 2 2 ) = . 9 8 4 1 2 4 5 8 3 7 2 2 8 2 6 8 5 7 7 4 5 d O  
~ ( 2 3 ) = . 9 9 3 5 3 0 1 7 2 2 6 6 3 5 0 7 5 7 5 4 8 d O  
~ ( 2 4 ) = . 9 9 8 7 7 1 0 0 7 2 5 2 4 2 6 1 1 8 6 0 1 d O  

~ ( 1 )  = . 0 6 4 7 3 7 6 9 6 8 1 2 6 8 3 9 2 2 5 0 3 d O  
w ( 2 )  = . 0 6 4 4 6 6 1 6 4 4 3 5 9 5 0 0 8 2 2 0 7 d O  
w ( 3 )  = . 0 6 3 9 2 4 2 3 8 5 8 4 6 4 8 1 8 6 6 2 4 d O  
w ( 4 )  = . 0 6 3 1 1 4 1 9 2 2 8 6 2 5 4 0 2 5 6 5 7 d O  
w ( 5 )  = . 0 6 2 0 3 9 4 2 3 1 5 9 8 9 2 6 6 3 9 0 4 d O  
w ( 6 )  = . 0 6 0 7 0 4 4 3 9 1 6 5 8 9 3 8 8 0 0 5 3 d O  
w ( 7 )  =.059114839698395635746dO 
w ( 8 )  = . 0 5 7 2 7 7 2 9 2 1 0 0 4 0 3 2 1 5 7 0 5 d O  
w ( 9 )  = .055199503699984162868dO 
w ( 1 0 ) = . 0 5 2 8 9 0 1 8 9 4 8 5 1 9 3 6 6 7 0 9 6 d O  
~ ( 1 1 ) = . 0 5 0 3 5 9 0 3 5 5 5 3 8 5 4 4 7 4 9 5 8 d O  
~ ( 1 2 ) = . 0 4 7 6 1 6 6 5 8 4 9 2 4 9 0 4 7 4 8 2 6 d O  
w ( 1 3 ) = . 0 4 4 6 7 4 5 6 0 8 5 6 6 9 4 2 8 0 4 1 9 d O  
~ ( 1 4 ) = . 0 4 1 5 4 5 0 8 2 9 4 3 4 6 4 7 4 9 2 1 4 d O  
w ( 1 5 ) = . 0 3 8 2 4 1 3 5 1 0 6 5 8 3 0 7 0 6 3 1 7 d 0  
~ ( 1 6 ) = . 0 3 4 7 7 7 2 2 2 5 6 4 7 7 0 4 3 8 8 9 3 d O  
~ ( 1 7 ) = . 0 3 1 1 6 7 2 2 7 8 3 2 7 9 8 0 8 8 9 0 2 d O  
w ( 1 8 ) = . 0 2 7 4 2 6 5 0 9 7 0 8 3 5 6 9 4 8 2 O O d O  
~ ( 1 9 ) = . 0 2 3 5 7 0 7 6 0 8 3 9 3 2 4 3 7 9 1 4 l d Q  
w ( 2 0 ) = . 0 1 9 6 1 6 1 6 0 4 5 7 3 5 5 5 2 7 8 1 4 d ~  
~ ( 2 1 ) = . 0 1 5 5 7 9 3 1 5 7 2 2 9 4 3 8 4 8 7 2 8 d O  
w ( 2 2 ) = . 0 1 1 4 7 7 2 3 4 5 7 9 2 3 4 5 3 9 4 9 0 d O  
w ( 2 3 ) = . 0 0 7 3 2 7 5 5 3 9 0 1 2 7 6 2 6 2 1 0 2 d O  
w ( 2 4 ) = . 0 0 3 1 5 3 3 4 6 0 5 2 3 0 5 8 3 8 6 3 3 d O  



€317 

do 1 k=l,nn 
z(nn+k)=-z(k) 
w(nn+k)=w(k) 

1 continue 

do 2 k=l,nn 
z(k)=-z(n+l-k) 
w(k)=w(n+l-k) 

2 continue 
return 
end 


